Preprint: Multi-objective Evolutionary Algorithm for the Optimization of Noisy Combustion Processes

نویسندگان

  • Dirk Büche
  • Peter Stoll
  • Rolf Dornberger
  • Petros Koumoutsakos
چکیده

Evolutionary Algorithms have been applied to single and multiple objectives optimization problems, with a strong emphasis on problems, solved through numerical simulations. However in several engineering problems, there is limited availability of suitable models and there is need for optimization of realistic or experimental configurations. The multiobjective optimization of an experimental set-up is addressed in this work. Experimental setups present a number of challenges to any optimization technique including: availability only of pointwise information, experimental noise in the objective function, uncontrolled changing of environmental conditions and measurement failure. This work introduces a multi-objective evolutionary algorithm capable of handling noisy problems with a particular emphasis on robustness against unexpected measurements (outliers). The algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele and includes the new concepts of domination dependent lifetime, re-evaluation of solutions and modifications in the update of the archive population. Several tests on prototypical functions underline the improvements in convergence speed and robustness of the extended algorithm. The proposed algorithm is implemented to the Pareto optimization of the combustion process of a stationary gas turbine in an industrial setup. The Pareto front is constructed for the objectives of minimization of NOx emissions and reduction of the pressure fluctuations (pulsation) of the flame. Both objectives are conflicting affecting the environment and the lifetime of the turbine, respectively. The optimization leads a Pareto front corresponding to reduced emissions and pulsation of the burner. The physical implications of the solutions are discussed and the algorithm is evaluated. Keywords—evolutionary algorithms, multi-objective optimization, noisy objective functions, gas turbine combustion, emission reduction, combustion instabilities

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

An Approach to Reducing Overfitting in FCM with Evolutionary Optimization

Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...

متن کامل

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...

متن کامل

A Method for Pre-Calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-Objective Genetic Algorithm

Diesel engine emission standards are being more stringent as it gains more publicity in industry and transportation. Hence, designers have to suggest new controlling strategies which result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good approach inasmuch as several types of ...

متن کامل

OPTIMIZATION OF STEEL MOMENT FRAME BY A PROPOSED EVOLUTIONARY ALGORITHM

This paper presents an improved multi-objective evolutionary algorithm (IMOEA) for the design of planar steel frames. By considering constraints as a new objective function, single objective optimization problems turned to multi objective optimization problems. To increase efficiency of IMOEA different Crossover and Mutation are employed. Also to avoid local optima dynamic interference of mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002